What is Microprocessor?
The simple definition of microprocessor, as per its functionality is that it is a tiny fabricated silicon chip, known as programmable micro controller, which is able to execute the predefined set of instruction and to address the predefined range of memory space along with the few I/O devices such as keyboard and LCD display.
Evolution of Microprocessors
The evolution of microprocessor started with the world’s first microprocessor by Intel Corporation, the Intel 4004 in 15th Nov. 1971. This is a 4-bit microprocessor with memory addressing capacity of 4096 4-bit memory locations. Later came in market 8008 and followed by series of processors over couple of decades 8080, 8085, 8086, 80186 and 80286. Finally came to market the 32-bit processor, 80386. This processor has been ruling the computer world still.
So we saw the 8-bit processors initially and then 16-bit processors for couple of years. Then came 32-bit processor architecture and it has been in use for more than a decade. The capacity of these processors to address the memory range and the FLOPS (Floating Point Operations per Second) was enough to handle the real world computation requirements needed by that time.
But as the human generation found the ease of using computers and its advantage in industry automation, the demand started increasing for computation ability. These microprocessors were found incapable in processing ability and also in accessing the bigger memory space. The increase in demand for high computing ability and bigger memory range by applications, put the continuous pressure on chip manufacturers such is Intel, AMD etc, to invent for the new technology. To meet the computing requirement of the real world, chip manufacturers released the next new version of microprocessor with 64-bit architecture. Intel and AMD are the 2 giants for providing this 64-bit microprocessor architecture to the computing world.
With this 64-bit architecture the memory range and the computing capacity both increased significantly. This processor can address 16 Tera bytes of memory (1 Tera bytes = 1024 GB) unlike the only 4GB for 32-bit case. So each application gets lot of memory. It was only 4GB for applications running on 32-bit microprocessors. Processing capacity is doubled as the data bus is doubled in width from 32 to 64 bits.
Can these processors grow the same way in future? Does Moore’s law answer this?
No comments:
Post a Comment